Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Blur Robust Optical Flow using Motion Channel (1603.02253v1)

Published 7 Mar 2016 in cs.CV

Abstract: It is hard to estimate optical flow given a realworld video sequence with camera shake and other motion blur. In this paper, we first investigate the blur parameterization for video footage using near linear motion elements. we then combine a commercial 3D pose sensor with an RGB camera, in order to film video footage of interest together with the camera motion. We illustrates that this additional camera motion/trajectory channel can be embedded into a hybrid framework by interleaving an iterative blind deconvolution and warping based optical flow scheme. Our method yields improved accuracy within three other state-of-the-art baselines given our proposed ground truth blurry sequences; and several other realworld sequences filmed by our imaging system.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.