Independent Sets in Classes Related to Chair/Fork-free Graphs (1603.02011v1)
Abstract: The Maximum Weight Independent Set (MWIS) problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. MWIS is known to be $NP$-complete in general, even under various restrictions. Let $S_{i,j,k}$ be the graph consisting of three induced paths of lengths $i, j, k$ with a common initial vertex. The complexity of the MWIS problem for $S_{1, 2, 2}$-free graphs, and for $S_{1, 1, 3}$-free graphs are open. In this paper, we show that the MWIS problem can solved in polynomial time for ($S_{1, 2, 2}$, $S_{1, 1, 3}$, co-chair)-free graphs, by analyzing the structure of the subclasses of this class of graphs. This extends some known results in the literature.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.