Network modularity in the presence of covariates (1603.01214v1)
Abstract: We characterize the large-sample properties of network modularity in the presence of covariates, under a natural and flexible nonparametric null model. This provides for the first time an objective measure of whether or not a particular value of modularity is meaningful. In particular, our results quantify the strength of the relation between observed community structure and the interactions in a network. Our technical contribution is to provide limit theorems for modularity when a community assignment is given by nodal features or covariates. These theorems hold for a broad class of network models over a range of sparsity regimes, as well as weighted, multi-edge, and power-law networks. This allows us to assign $p$-values to observed community structure, which we validate using several benchmark examples in the literature. We conclude by applying this methodology to investigate a multi-edge network of corporate email interactions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.