Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MGNC-CNN: A Simple Approach to Exploiting Multiple Word Embeddings for Sentence Classification (1603.00968v2)

Published 3 Mar 2016 in cs.CL

Abstract: We introduce a novel, simple convolution neural network (CNN) architecture - multi-group norm constraint CNN (MGNC-CNN) that capitalizes on multiple sets of word embeddings for sentence classification. MGNC-CNN extracts features from input embedding sets independently and then joins these at the penultimate layer in the network to form a final feature vector. We then adopt a group regularization strategy that differentially penalizes weights associated with the subcomponents generated from the respective embedding sets. This model is much simpler than comparable alternative architectures and requires substantially less training time. Furthermore, it is flexible in that it does not require input word embeddings to be of the same dimensionality. We show that MGNC-CNN consistently outperforms baseline models.

Citations (105)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.