Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Filter based Taxonomy Modification for Improving Hierarchical Classification (1603.00772v3)

Published 2 Mar 2016 in cs.AI

Abstract: Hierarchical Classification (HC) is a supervised learning problem where unlabeled instances are classified into a taxonomy of classes. Several methods that utilize the hierarchical structure have been developed to improve the HC performance. However, in most cases apriori defined hierarchical structure by domain experts is inconsistent; as a consequence performance improvement is not noticeable in comparison to flat classification methods. We propose a scalable data-driven filter based rewiring approach to modify an expert-defined hierarchy. Experimental comparisons of top-down HC with our modified hierarchy, on a wide range of datasets shows classification performance improvement over the baseline hierarchy (i:e:, defined by expert), clustered hierarchy and flattening based hierarchy modification approaches. In comparison to existing rewiring approaches, our developed method (rewHier) is computationally efficient, enabling it to scale to datasets with large numbers of classes, instances and features. We also show that our modified hierarchy leads to improved classification performance for classes with few training samples in comparison to flat and state-of-the-art HC approaches.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.