Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A note on distinct distances (1603.00740v2)

Published 29 Feb 2016 in math.MG, cs.CG, and math.CO

Abstract: We show that, for a constant-degree algebraic curve $\gamma$ in $\mathbb{R}D$, every set of $n$ points on $\gamma$ spans at least $\Omega(n{4/3})$ distinct distances, unless $\gamma$ is an {\it algebraic helix} (see Definition 1.1). This improves the earlier bound $\Omega(n{5/4})$ of Charalambides [Discrete Comput. Geom. (2014)]. We also show that, for every set $P$ of $n$ points that lie on a $d$-dimensional constant-degree algebraic variety $V$ in $\mathbb{R}D$, there exists a subset $S\subset P$ of size at least $\Omega(n{\frac{4}{9+12(d-1)}})$, such that $S$ spans $\binom{|S|}{2}$ distinct distances. This improves the earlier bound of $\Omega(n{\frac{1}{3d}})$ of Conlon et al. [SIAM J. Discrete Math. (2015)]. Both results are consequences of a common technical tool, given in Lemma 2.7 below.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)