Emergent Mind

A note on distinct distances

(1603.00740)
Published Feb 29, 2016 in math.MG , cs.CG , and math.CO

Abstract

We show that, for a constant-degree algebraic curve $\gamma$ in $\mathbb{R}D$, every set of $n$ points on $\gamma$ spans at least $\Omega(n{4/3})$ distinct distances, unless $\gamma$ is an {\it algebraic helix} (see Definition 1.1). This improves the earlier bound $\Omega(n{5/4})$ of Charalambides [Discrete Comput. Geom. (2014)]. We also show that, for every set $P$ of $n$ points that lie on a $d$-dimensional constant-degree algebraic variety $V$ in $\mathbb{R}D$, there exists a subset $S\subset P$ of size at least $\Omega(n{\frac{4}{9+12(d-1)}})$, such that $S$ spans $\binom{|S|}{2}$ distinct distances. This improves the earlier bound of $\Omega(n{\frac{1}{3d}})$ of Conlon et al. [SIAM J. Discrete Math. (2015)]. Both results are consequences of a common technical tool, given in Lemma 2.7 below.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.