Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on distinct distances (1603.00740v2)

Published 29 Feb 2016 in math.MG, cs.CG, and math.CO

Abstract: We show that, for a constant-degree algebraic curve $\gamma$ in $\mathbb{R}D$, every set of $n$ points on $\gamma$ spans at least $\Omega(n{4/3})$ distinct distances, unless $\gamma$ is an {\it algebraic helix} (see Definition 1.1). This improves the earlier bound $\Omega(n{5/4})$ of Charalambides [Discrete Comput. Geom. (2014)]. We also show that, for every set $P$ of $n$ points that lie on a $d$-dimensional constant-degree algebraic variety $V$ in $\mathbb{R}D$, there exists a subset $S\subset P$ of size at least $\Omega(n{\frac{4}{9+12(d-1)}})$, such that $S$ spans $\binom{|S|}{2}$ distinct distances. This improves the earlier bound of $\Omega(n{\frac{1}{3d}})$ of Conlon et al. [SIAM J. Discrete Math. (2015)]. Both results are consequences of a common technical tool, given in Lemma 2.7 below.

Citations (9)

Summary

We haven't generated a summary for this paper yet.