Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Asymptotic behavior of $\ell_p$-based Laplacian regularization in semi-supervised learning (1603.00564v1)

Published 2 Mar 2016 in cs.LG and stat.ML

Abstract: Given a weighted graph with $N$ vertices, consider a real-valued regression problem in a semi-supervised setting, where one observes $n$ labeled vertices, and the task is to label the remaining ones. We present a theoretical study of $\ell_p$-based Laplacian regularization under a $d$-dimensional geometric random graph model. We provide a variational characterization of the performance of this regularized learner as $N$ grows to infinity while $n$ stays constant, the associated optimality conditions lead to a partial differential equation that must be satisfied by the associated function estimate $\hat{f}$. From this formulation we derive several predictions on the limiting behavior the $d$-dimensional function $\hat{f}$, including (a) a phase transition in its smoothness at the threshold $p = d + 1$, and (b) a tradeoff between smoothness and sensitivity to the underlying unlabeled data distribution $P$. Thus, over the range $p \leq d$, the function estimate $\hat{f}$ is degenerate and "spiky," whereas for $p\geq d+1$, the function estimate $\hat{f}$ is smooth. We show that the effect of the underlying density vanishes monotonically with $p$, such that in the limit $p = \infty$, corresponding to the so-called Absolutely Minimal Lipschitz Extension, the estimate $\hat{f}$ is independent of the distribution $P$. Under the assumption of semi-supervised smoothness, ignoring $P$ can lead to poor statistical performance, in particular, we construct a specific example for $d=1$ to demonstrate that $p=2$ has lower risk than $p=\infty$ due to the former penalty adapting to $P$ and the latter ignoring it. We also provide simulations that verify the accuracy of our predictions for finite sample sizes. Together, these properties show that $p = d+1$ is an optimal choice, yielding a function estimate $\hat{f}$ that is both smooth and non-degenerate, while remaining maximally sensitive to $P$.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.