Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Asymptotic behavior of $\ell_p$-based Laplacian regularization in semi-supervised learning (1603.00564v1)

Published 2 Mar 2016 in cs.LG and stat.ML

Abstract: Given a weighted graph with $N$ vertices, consider a real-valued regression problem in a semi-supervised setting, where one observes $n$ labeled vertices, and the task is to label the remaining ones. We present a theoretical study of $\ell_p$-based Laplacian regularization under a $d$-dimensional geometric random graph model. We provide a variational characterization of the performance of this regularized learner as $N$ grows to infinity while $n$ stays constant, the associated optimality conditions lead to a partial differential equation that must be satisfied by the associated function estimate $\hat{f}$. From this formulation we derive several predictions on the limiting behavior the $d$-dimensional function $\hat{f}$, including (a) a phase transition in its smoothness at the threshold $p = d + 1$, and (b) a tradeoff between smoothness and sensitivity to the underlying unlabeled data distribution $P$. Thus, over the range $p \leq d$, the function estimate $\hat{f}$ is degenerate and "spiky," whereas for $p\geq d+1$, the function estimate $\hat{f}$ is smooth. We show that the effect of the underlying density vanishes monotonically with $p$, such that in the limit $p = \infty$, corresponding to the so-called Absolutely Minimal Lipschitz Extension, the estimate $\hat{f}$ is independent of the distribution $P$. Under the assumption of semi-supervised smoothness, ignoring $P$ can lead to poor statistical performance, in particular, we construct a specific example for $d=1$ to demonstrate that $p=2$ has lower risk than $p=\infty$ due to the former penalty adapting to $P$ and the latter ignoring it. We also provide simulations that verify the accuracy of our predictions for finite sample sizes. Together, these properties show that $p = d+1$ is an optimal choice, yielding a function estimate $\hat{f}$ that is both smooth and non-degenerate, while remaining maximally sensitive to $P$.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.