Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Crowdsourcing On-street Parking Space Detection (1603.00441v1)

Published 1 Mar 2016 in cs.HC and cs.LG

Abstract: As the number of vehicles continues to grow, parking spaces are at a premium in city streets. Additionally, due to the lack of knowledge about street parking spaces, heuristic circling the blocks not only costs drivers' time and fuel, but also increases city congestion. In the wake of recent trend to build convenient, green and energy-efficient smart cities, we rethink common techniques adopted by high-profile smart parking systems, and present a user-engaged (crowdsourcing) and sonar-based prototype to identify urban on-street parking spaces. The prototype includes an ultrasonic sensor, a GPS receiver and associated Arduino micro-controllers. It is mounted on the passenger side of a car to measure the distance from the vehicle to the nearest roadside obstacle. Multiple road tests are conducted around Wheatley, Oxford to gather results and emulate the crowdsourcing approach. By extracting parked vehicles' features from the collected trace, a supervised learning algorithm is developed to estimate roadside parking occupancy and spot illegal parking vehicles. A quantity estimation model is derived to calculate the required number of sensing units to cover urban streets. The estimation is quantitatively compared to a fixed sensing solution. The results show that the crowdsourcing way would need substantially fewer sensors compared to the fixed sensing system.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube