Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Nonlinear Adaptive Filter Based on the Model of Simple Multilinear Functionals (1603.00427v1)

Published 1 Mar 2016 in cs.SY and cs.LG

Abstract: Nonlinear adaptive filtering allows for modeling of some additional aspects of a general system and usually relies on highly complex algorithms, such as those based on the Volterra series. Through the use of the Kronecker product and some basic facts of tensor algebra, we propose a simple model of nonlinearity, one that can be interpreted as a product of the outputs of K FIR linear filters, and compute its cost function together with its gradient, which allows for some analysis of the optimization problem. We use these results it in a stochastic gradient framework, from which we derive an LMS-like algorithm and investigate the problems of multi-modality in the mean-square error surface and the choice of adequate initial conditions. Its computational complexity is calculated. The new algorithm is tested in a system identification setup and is compared with other polynomial algorithms from the literature, presenting favorable convergence and/or computational complexity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.