Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Fast Randomized Algorithm for Multi-Objective Query Optimization (1603.00400v1)

Published 1 Mar 2016 in cs.DB

Abstract: Query plans are compared according to multiple cost metrics in multi-objective query optimization. The goal is to find the set of Pareto plans realizing optimal cost tradeoffs for a given query. So far, only algorithms with exponential complexity in the number of query tables have been proposed for multi-objective query optimization. In this work, we present the first algorithm with polynomial complexity in the query size. Our algorithm is randomized and iterative. It improves query plans via a multi-objective version of hill climbing that applies multiple transformations in each climbing step for maximal efficiency. Based on a locally optimal plan, we approximate the Pareto plan set within the restricted space of plans with similar join orders. We maintain a cache of Pareto-optimal plans for each potentially useful intermediate result to share partial plans that were discovered in different iterations. We show that each iteration of our algorithm performs in expected polynomial time based on an analysis of the expected path length between a random plan and local optima reached by hill climbing. We experimentally show that our algorithm can optimize queries with hundreds of tables and outperforms other randomized algorithms such as the NSGA-II genetic algorithm over a wide range of scenarios.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube