Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

A Fast Randomized Algorithm for Multi-Objective Query Optimization (1603.00400v1)

Published 1 Mar 2016 in cs.DB

Abstract: Query plans are compared according to multiple cost metrics in multi-objective query optimization. The goal is to find the set of Pareto plans realizing optimal cost tradeoffs for a given query. So far, only algorithms with exponential complexity in the number of query tables have been proposed for multi-objective query optimization. In this work, we present the first algorithm with polynomial complexity in the query size. Our algorithm is randomized and iterative. It improves query plans via a multi-objective version of hill climbing that applies multiple transformations in each climbing step for maximal efficiency. Based on a locally optimal plan, we approximate the Pareto plan set within the restricted space of plans with similar join orders. We maintain a cache of Pareto-optimal plans for each potentially useful intermediate result to share partial plans that were discovered in different iterations. We show that each iteration of our algorithm performs in expected polynomial time based on an analysis of the expected path length between a random plan and local optima reached by hill climbing. We experimentally show that our algorithm can optimize queries with hundreds of tables and outperforms other randomized algorithms such as the NSGA-II genetic algorithm over a wide range of scenarios.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.