Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

You Are What Apps You Use: Demographic Prediction Based on User's Apps (1603.00059v1)

Published 29 Feb 2016 in cs.SI

Abstract: Understanding the demographics of app users is crucial, for example, for app developers, who wish to target their advertisements more effectively. Our work addresses this need by studying the predictability of user demographics based on the list of a user's apps which is readily available to many app developers. We extend previous work on the problem on three frontiers: (1) We predict new demographics (age, race, and income) and analyze the most informative apps for four demographic attributes included in our analysis. The most predictable attribute is gender (82.3 % accuracy), whereas the hardest to predict is income (60.3 % accuracy). (2) We compare several dimensionality reduction methods for high-dimensional app data, finding out that an unsupervised method yields superior results compared to aggregating the apps at the app category level, but the best results are obtained simply by the raw list of apps. (3) We look into the effect of the training set size and the number of apps on the predictability and show that both of these factors have a large impact on the prediction accuracy. The predictability increases, or in other words, a user's privacy decreases, the more apps the user has used, but somewhat surprisingly, after 100 apps, the prediction accuracy starts to decrease.

Citations (89)

Summary

We haven't generated a summary for this paper yet.