Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Pandora: Description of a Painting Database for Art Movement Recognition with Baselines and Perspectives (1602.08855v1)

Published 29 Feb 2016 in cs.CV

Abstract: To facilitate computer analysis of visual art, in the form of paintings, we introduce Pandora (Paintings Dataset for Recognizing the Art movement) database, a collection of digitized paintings labelled with respect to the artistic movement. Noting that the set of databases available as benchmarks for evaluation is highly reduced and most existing ones are limited in variability and number of images, we propose a novel large scale dataset of digital paintings. The database consists of more than 7700 images from 12 art movements. Each genre is illustrated by a number of images varying from 250 to nearly 1000. We investigate how local and global features and classification systems are able to recognize the art movement. Our experimental results suggest that accurate recognition is achievable by a combination of various categories.To facilitate computer analysis of visual art, in the form of paintings, we introduce Pandora (Paintings Dataset for Recognizing the Art movement) database, a collection of digitized paintings labelled with respect to the artistic movement. Noting that the set of databases available as benchmarks for evaluation is highly reduced and most existing ones are limited in variability and number of images, we propose a novel large scale dataset of digital paintings. The database consists of more than 7700 images from 12 art movements. Each genre is illustrated by a number of images varying from 250 to nearly 1000. We investigate how local and global features and classification systems are able to recognize the art movement. Our experimental results suggest that accurate recognition is achievable by a combination of various categories.

Citations (37)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.