Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Gibberish Semantics: How Good is Russian Twitter in Word Semantic Similarity Task? (1602.08741v1)

Published 28 Feb 2016 in cs.CL

Abstract: The most studied and most successful LLMs were developed and evaluated mainly for English and other close European languages, such as French, German, etc. It is important to study applicability of these models to other languages. The use of vector space models for Russian was recently studied for multiple corpora, such as Wikipedia, RuWac, lib.ru. These models were evaluated against word semantic similarity task. For our knowledge Twitter was not considered as a corpus for this task, with this work we fill the gap. Results for vectors trained on Twitter corpus are comparable in accuracy with other single-corpus trained models, although the best performance is currently achieved by combination of multiple corpora.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)