Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Structured Variational Auto-encoder for Learning Deep Hierarchies of Sparse Features (1602.08734v1)

Published 28 Feb 2016 in stat.ML, cs.LG, and stat.CO

Abstract: In this note we present a generative model of natural images consisting of a deep hierarchy of layers of latent random variables, each of which follows a new type of distribution that we call rectified Gaussian. These rectified Gaussian units allow spike-and-slab type sparsity, while retaining the differentiability necessary for efficient stochastic gradient variational inference. To learn the parameters of the new model, we approximate the posterior of the latent variables with a variational auto-encoder. Rather than making the usual mean-field assumption however, the encoder parameterizes a new type of structured variational approximation that retains the prior dependencies of the generative model. Using this structured posterior approximation, we are able to perform joint training of deep models with many layers of latent random variables, without having to resort to stacking or other layerwise training procedures.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.