Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Structured Variational Auto-encoder for Learning Deep Hierarchies of Sparse Features (1602.08734v1)

Published 28 Feb 2016 in stat.ML, cs.LG, and stat.CO

Abstract: In this note we present a generative model of natural images consisting of a deep hierarchy of layers of latent random variables, each of which follows a new type of distribution that we call rectified Gaussian. These rectified Gaussian units allow spike-and-slab type sparsity, while retaining the differentiability necessary for efficient stochastic gradient variational inference. To learn the parameters of the new model, we approximate the posterior of the latent variables with a variational auto-encoder. Rather than making the usual mean-field assumption however, the encoder parameterizes a new type of structured variational approximation that retains the prior dependencies of the generative model. Using this structured posterior approximation, we are able to perform joint training of deep models with many layers of latent random variables, without having to resort to stacking or other layerwise training procedures.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Tim Salimans (46 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.