Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Alpaka - An Abstraction Library for Parallel Kernel Acceleration (1602.08477v1)

Published 26 Feb 2016 in cs.DC and cs.MS

Abstract: Porting applications to new hardware or programming models is a tedious and error prone process. Every help that eases these burdens is saving developer time that can then be invested into the advancement of the application itself instead of preserving the status-quo on a new platform. The Alpaka library defines and implements an abstract hierarchical redundant parallelism model. The model exploits parallelism and memory hierarchies on a node at all levels available in current hardware. By doing so, it allows to achieve platform and performance portability across various types of accelerators by ignoring specific unsupported levels and utilizing only the ones supported on a specific accelerator. All hardware types (multi- and many-core CPUs, GPUs and other accelerators) are supported for and can be programmed in the same way. The Alpaka C++ template interface allows for straightforward extension of the library to support other accelerators and specialization of its internals for optimization. Running Alpaka applications on a new (and supported) platform requires the change of only one source code line instead of a lot of #ifdefs.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube