Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Adaptive Frequency Cepstral Coefficients for Word Mispronunciation Detection (1602.08132v1)

Published 25 Feb 2016 in cs.SD and cs.CV

Abstract: Systems based on automatic speech recognition (ASR) technology can provide important functionality in computer assisted language learning applications. This is a young but growing area of research motivated by the large number of students studying foreign languages. Here we propose a Hidden Markov Model (HMM)-based method to detect mispronunciations. Exploiting the specific dialog scripting employed in language learning software, HMMs are trained for different pronunciations. New adaptive features have been developed and obtained through an adaptive warping of the frequency scale prior to computing the cepstral coefficients. The optimization criterion used for the warping function is to maximize separation of two major groups of pronunciations (native and non-native) in terms of classification rate. Experimental results show that the adaptive frequency scale yields a better coefficient representation leading to higher classification rates in comparison with conventional HMMs using Mel-frequency cepstral coefficients.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.