Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast Nonsmooth Regularized Risk Minimization with Continuation (1602.07844v1)

Published 25 Feb 2016 in cs.LG, math.OC, and stat.ML

Abstract: In regularized risk minimization, the associated optimization problem becomes particularly difficult when both the loss and regularizer are nonsmooth. Existing approaches either have slow or unclear convergence properties, are restricted to limited problem subclasses, or require careful setting of a smoothing parameter. In this paper, we propose a continuation algorithm that is applicable to a large class of nonsmooth regularized risk minimization problems, can be flexibly used with a number of existing solvers for the underlying smoothed subproblem, and with convergence results on the whole algorithm rather than just one of its subproblems. In particular, when accelerated solvers are used, the proposed algorithm achieves the fastest known rates of $O(1/T2)$ on strongly convex problems, and $O(1/T)$ on general convex problems. Experiments on nonsmooth classification and regression tasks demonstrate that the proposed algorithm outperforms the state-of-the-art.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.