Papers
Topics
Authors
Recent
2000 character limit reached

Top-N Recommendation with Novel Rank Approximation (1602.07783v2)

Published 25 Feb 2016 in cs.IR, cs.AI, and stat.ML

Abstract: The importance of accurate recommender systems has been widely recognized by academia and industry. However, the recommendation quality is still rather low. Recently, a linear sparse and low-rank representation of the user-item matrix has been applied to produce Top-N recommendations. This approach uses the nuclear norm as a convex relaxation for the rank function and has achieved better recommendation accuracy than the state-of-the-art methods. In the past several years, solving rank minimization problems by leveraging nonconvex relaxations has received increasing attention. Some empirical results demonstrate that it can provide a better approximation to original problems than convex relaxation. In this paper, we propose a novel rank approximation to enhance the performance of Top-N recommendation systems, where the approximation error is controllable. Experimental results on real data show that the proposed rank approximation improves the Top-$N$ recommendation accuracy substantially.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.