Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Low Complexity Sparse Bayesian Learning Using Combined BP and MF with a Stretched Factor Graph (1602.07762v1)

Published 25 Feb 2016 in cs.IT and math.IT

Abstract: This paper concerns message passing based approaches to sparse Bayesian learning (SBL) with a linear model corrupted by additive white Gaussian noise with unknown variance. With the conventional factor graph, mean field (MF) message passing based algorithms have been proposed in the literature. In this work, instead of using the conventional factor graph, we modify the factor graph by adding some extra hard constraints (the graph looks like being `stretched'), which enables the use of combined belief propagation (BP) and MF message passing. We then propose a low complexity BP-MF SBL algorithm based on which an approximate BP-MF SBL algorithm is also developed to further reduce the complexity. Thanks to the use of BP, the BP-MF SBL algorithms show their merits compared with state-of-the-art MF SBL algorithms: they deliver even better performance with much lower complexity compared with the vector-form MF SBL algorithm and they significantly outperform the scalar-form MF SBL algorithm with similar complexity.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.