Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Max-Margin Nonparametric Latent Feature Models for Link Prediction (1602.07428v1)

Published 24 Feb 2016 in cs.LG, cs.SI, stat.ME, and stat.ML

Abstract: Link prediction is a fundamental task in statistical network analysis. Recent advances have been made on learning flexible nonparametric Bayesian latent feature models for link prediction. In this paper, we present a max-margin learning method for such nonparametric latent feature relational models. Our approach attempts to unite the ideas of max-margin learning and Bayesian nonparametrics to discover discriminative latent features for link prediction. It inherits the advances of nonparametric Bayesian methods to infer the unknown latent social dimension, while for discriminative link prediction, it adopts the max-margin learning principle by minimizing a hinge-loss using the linear expectation operator, without dealing with a highly nonlinear link likelihood function. For posterior inference, we develop an efficient stochastic variational inference algorithm under a truncated mean-field assumption. Our methods can scale up to large-scale real networks with millions of entities and tens of millions of positive links. We also provide a full Bayesian formulation, which can avoid tuning regularization hyper-parameters. Experimental results on a diverse range of real datasets demonstrate the benefits inherited from max-margin learning and Bayesian nonparametric inference.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.