Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning to Generate with Memory (1602.07416v2)

Published 24 Feb 2016 in cs.LG and cs.CV

Abstract: Memory units have been widely used to enrich the capabilities of deep networks on capturing long-term dependencies in reasoning and prediction tasks, but little investigation exists on deep generative models (DGMs) which are good at inferring high-level invariant representations from unlabeled data. This paper presents a deep generative model with a possibly large external memory and an attention mechanism to capture the local detail information that is often lost in the bottom-up abstraction process in representation learning. By adopting a smooth attention model, the whole network is trained end-to-end by optimizing a variational bound of data likelihood via auto-encoding variational Bayesian methods, where an asymmetric recognition network is learnt jointly to infer high-level invariant representations. The asymmetric architecture can reduce the competition between bottom-up invariant feature extraction and top-down generation of instance details. Our experiments on several datasets demonstrate that memory can significantly boost the performance of DGMs and even achieve state-of-the-art results on various tasks, including density estimation, image generation, and missing value imputation.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.