Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On closure operators related to maximal tricliques in tripartite hypergraphs (1602.07267v2)

Published 23 Feb 2016 in cs.DM

Abstract: Triadic Formal Concept Analysis (3FCA) was introduced by Lehman and Wille almost two decades ago. And many researchers work in Data Mining and Formal Concept Analysis using the notions of closed sets, Galois and closure operators, closure systems, but up-to-date even though that different researchers actively work on mining triadic and n-ary relations, a proper closure operator for enumeration of triconcepts, i.e. maximal triadic cliques of tripartite hypergaphs, was not introduced. In this paper we show that the previously introduced operators for obtaining triconcepts and maximal connected and complete sets (MCCSs) are not always consistent and provide the reader with a definition of valid closure operator and associated set system. Moreover, we study the difficulties of related problems from order-theoretic and combinatorial point view as well as provide the reader with justifications of the complexity classes of these problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.