Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Lens depth function and k-relative neighborhood graph: versatile tools for ordinal data analysis (1602.07194v2)

Published 23 Feb 2016 in stat.ML, cs.DS, and cs.LG

Abstract: In recent years it has become popular to study machine learning problems in a setting of ordinal distance information rather than numerical distance measurements. By ordinal distance information we refer to binary answers to distance comparisons such as $d(A,B)<d(C,D)$. For many problems in machine learning and statistics it is unclear how to solve them in such a scenario. Up to now, the main approach is to explicitly construct an ordinal embedding of the data points in the Euclidean space, an approach that has a number of drawbacks. In this paper, we propose algorithms for the problems of medoid estimation, outlier identification, classification, and clustering when given only ordinal data. They are based on estimating the lens depth function and the $k$-relative neighborhood graph on a data set. Our algorithms are simple, are much faster than an ordinal embedding approach and avoid some of its drawbacks, and can easily be parallelized.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.