Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Streaming Algorithm for Crowdsourced Data Classification (1602.07107v1)

Published 23 Feb 2016 in stat.ML and cs.LG

Abstract: We propose a streaming algorithm for the binary classification of data based on crowdsourcing. The algorithm learns the competence of each labeller by comparing her labels to those of other labellers on the same tasks and uses this information to minimize the prediction error rate on each task. We provide performance guarantees of our algorithm for a fixed population of independent labellers. In particular, we show that our algorithm is optimal in the sense that the cumulative regret compared to the optimal decision with known labeller error probabilities is finite, independently of the number of tasks to label. The complexity of the algorithm is linear in the number of labellers and the number of tasks, up to some logarithmic factors. Numerical experiments illustrate the performance of our algorithm compared to existing algorithms, including simple majority voting and expectation-maximization algorithms, on both synthetic and real datasets.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.