Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Joint ML calibration and DOA estimation with separated arrays (1602.06885v4)

Published 22 Feb 2016 in stat.AP, cs.IT, and math.IT

Abstract: This paper investigates parametric direction-of-arrival (DOA) estimation in a particular context: i) each sensor is characterized by an unknown complex gain and ii) the array consists of a collection of subarrays which are substantially separated from each other leading to a structured noise covariance matrix. We propose two iterative algorithms based on the maximum likelihood (ML) estimation method adapted to the context of joint array calibration and DOA estimation. Numerical simulations reveal that the two proposed schemes, the iterative ML (IML) and the modified iterative ML (MIML) algorithms for joint array calibration and DOA estimation, outperform the state of the art methods and the MIML algorithm reaches the Cram\'er-Rao bound for a low number of iterations.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.