Papers
Topics
Authors
Recent
2000 character limit reached

Joint ML calibration and DOA estimation with separated arrays (1602.06885v4)

Published 22 Feb 2016 in stat.AP, cs.IT, and math.IT

Abstract: This paper investigates parametric direction-of-arrival (DOA) estimation in a particular context: i) each sensor is characterized by an unknown complex gain and ii) the array consists of a collection of subarrays which are substantially separated from each other leading to a structured noise covariance matrix. We propose two iterative algorithms based on the maximum likelihood (ML) estimation method adapted to the context of joint array calibration and DOA estimation. Numerical simulations reveal that the two proposed schemes, the iterative ML (IML) and the modified iterative ML (MIML) algorithms for joint array calibration and DOA estimation, outperform the state of the art methods and the MIML algorithm reaches the Cram\'er-Rao bound for a low number of iterations.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.