An Empirical Study on Computing Equilibria in Polymatrix Games (1602.06865v2)
Abstract: The Nash equilibrium is an important benchmark for behaviour in systems of strategic autonomous agents. Polymatrix games are a succinct and expressive representation of multiplayer games that model pairwise interactions between players. The empirical performance of algorithms to solve these games has received little attention, despite their wide-ranging applications. In this paper we carry out a comprehensive empirical study of two prominent algorithms for computing a sample equilibrium in these games, Lemke's algorithm that computes an exact equilibrium, and a gradient descent method that computes an approximate equilibrium. Our study covers games arising from a number of interesting applications. We find that Lemke's algorithm can compute exact equilibria in relatively large games in a reasonable amount of time. If we are willing to accept (high-quality) approximate equilibria, then we can deal with much larger games using the descent method. We also report on which games are most challenging for each of the algorithms.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.