Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Uniform Hypergraph Partitioning: Provable Tensor Methods and Sampling Techniques (1602.06516v4)

Published 21 Feb 2016 in cs.LG and stat.ML

Abstract: In a series of recent works, we have generalised the consistency results in the stochastic block model literature to the case of uniform and non-uniform hypergraphs. The present paper continues the same line of study, where we focus on partitioning weighted uniform hypergraphs---a problem often encountered in computer vision. This work is motivated by two issues that arise when a hypergraph partitioning approach is used to tackle computer vision problems: (i) The uniform hypergraphs constructed for higher-order learning contain all edges, but most have negligible weights. Thus, the adjacency tensor is nearly sparse, and yet, not binary. (ii) A more serious concern is that standard partitioning algorithms need to compute all edge weights, which is computationally expensive for hypergraphs. This is usually resolved in practice by merging the clustering algorithm with a tensor sampling strategy---an approach that is yet to be analysed rigorously. We build on our earlier work on partitioning dense unweighted uniform hypergraphs (Ghoshdastidar and Dukkipati, ICML, 2015), and address the aforementioned issues by proposing provable and efficient partitioning algorithms. Our analysis justifies the empirical success of practical sampling techniques. We also complement our theoretical findings by elaborate empirical comparison of various hypergraph partitioning schemes.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.