Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Size and the Approximability of Minimum Temporally Connected Subgraphs (1602.06411v1)

Published 20 Feb 2016 in cs.DS

Abstract: We consider temporal graphs with discrete time labels and investigate the size and the approximability of minimum temporally connected spanning subgraphs. We present a family of minimally connected temporal graphs with $n$ vertices and $\Omega(n2)$ edges, thus resolving an open question of (Kempe, Kleinberg, Kumar, JCSS 64, 2002) about the existence of sparse temporal connectivity certificates. Next, we consider the problem of computing a minimum weight subset of temporal edges that preserve connectivity of a given temporal graph either from a given vertex r (r-MTC problem) or among all vertex pairs (MTC problem). We show that the approximability of r-MTC is closely related to the approximability of Directed Steiner Tree and that r-MTC can be solved in polynomial time if the underlying graph has bounded treewidth. We also show that the best approximation ratio for MTC is at least $O(2{\log{1-\epsilon} n})$ and at most $O(\min{n{1+\epsilon}, (\Delta M){2/3+\epsilon}})$, for any constant $\epsilon > 0$, where $M$ is the number of temporal edges and $\Delta$ is the maximum degree of the underlying graph. Furthermore, we prove that the unweighted version of MTC is APX-hard and that MTC is efficiently solvable in trees and $2$-approximable in cycles.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kyriakos Axiotis (16 papers)
  2. Dimitris Fotakis (54 papers)
Citations (33)

Summary

We haven't generated a summary for this paper yet.