Papers
Topics
Authors
Recent
2000 character limit reached

Revise Saturated Activation Functions (1602.05980v2)

Published 18 Feb 2016 in cs.LG

Abstract: In this paper, we revise two commonly used saturated functions, the logistic sigmoid and the hyperbolic tangent (tanh). We point out that, besides the well-known non-zero centered property, slope of the activation function near the origin is another possible reason making training deep networks with the logistic function difficult to train. We demonstrate that, with proper rescaling, the logistic sigmoid achieves comparable results with tanh. Then following the same argument, we improve tahn by penalizing in the negative part. We show that "penalized tanh" is comparable and even outperforms the state-of-the-art non-saturated functions including ReLU and leaky ReLU on deep convolution neural networks. Our results contradict to the conclusion of previous works that the saturation property causes the slow convergence. It suggests further investigation is necessary to better understand activation functions in deep architectures.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.