Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Distortion-Resistant Hashing for rapid search of similar DNA subsequence (1602.05889v1)

Published 18 Feb 2016 in cs.DS, cs.IT, and math.IT

Abstract: One of the basic tasks in bioinformatics is localizing a short subsequence $S$, read while sequencing, in a long reference sequence $R$, like the human geneome. A natural rapid approach would be finding a hash value for $S$ and compare it with a prepared database of hash values for each of length $|S|$ subsequences of $R$. The problem with such approach is that it would only spot a perfect match, while in reality there are lots of small changes: substitutions, deletions and insertions. This issue could be repaired if having a hash function designed to tolerate some small distortion accordingly to an alignment metric (like Needleman-Wunch): designed to make that two similar sequences should most likely give the same hash value. This paper discusses construction of Distortion-Resistant Hashing (DRH) to generate such fingerprints for rapid search of similar subsequences. The proposed approach is based on the rate distortion theory: in a nearly uniform subset of length $|S|$ sequences, the hash value represents the closest sequence to $S$. This gives some control of the distance of collisions: sequences having the same hash value.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube