Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An improved analysis of the ER-SpUD dictionary learning algorithm (1602.05719v1)

Published 18 Feb 2016 in cs.LG, cs.DS, cs.IT, math.IT, and math.PR

Abstract: In "dictionary learning" we observe $Y = AX + E$ for some $Y\in\mathbb{R}{n\times p}$, $A \in\mathbb{R}{m\times n}$, and $X\in\mathbb{R}{m\times p}$. The matrix $Y$ is observed, and $A, X, E$ are unknown. Here $E$ is "noise" of small norm, and $X$ is column-wise sparse. The matrix $A$ is referred to as a {\em dictionary}, and its columns as {\em atoms}. Then, given some small number $p$ of samples, i.e.\ columns of $Y$, the goal is to learn the dictionary $A$ up to small error, as well as $X$. The motivation is that in many applications data is expected to sparse when represented by atoms in the "right" dictionary $A$ (e.g.\ images in the Haar wavelet basis), and the goal is to learn $A$ from the data to then use it for other applications. Recently, [SWW12] proposed the dictionary learning algorithm ER-SpUD with provable guarantees when $E = 0$ and $m = n$. They showed if $X$ has independent entries with an expected $s$ non-zeroes per column for $1 \lesssim s \lesssim \sqrt{n}$, and with non-zero entries being subgaussian, then for $p\gtrsim n2\log2 n$ with high probability ER-SpUD outputs matrices $A', X'$ which equal $A, X$ up to permuting and scaling columns (resp.\ rows) of $A$ (resp.\ $X$). They conjectured $p\gtrsim n\log n$ suffices, which they showed was information theoretically necessary for {\em any} algorithm to succeed when $s \simeq 1$. Significant progress was later obtained in [LV15]. We show that for a slight variant of ER-SpUD, $p\gtrsim n\log(n/\delta)$ samples suffice for successful recovery with probability $1-\delta$. We also show that for the unmodified ER-SpUD, $p\gtrsim n{1.99}$ samples are required even to learn $A, X$ with polynomially small success probability. This resolves the main conjecture of [SWW12], and contradicts the main result of [LV15], which claimed that $p\gtrsim n\log4 n$ guarantees success whp.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.