Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the fine-grained complexity of rainbow coloring (1602.05608v1)

Published 17 Feb 2016 in cs.DS and cs.DM

Abstract: The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored in $k$ colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all edges of different colors. Our main result states that for any $k\ge 2$, there is no algorithm for Rainbow k-Coloring running in time $2{o(n{3/2})}$, unless ETH fails. Motivated by this negative result we consider two parameterized variants of the problem. In Subset Rainbow k-Coloring problem, introduced by Chakraborty et al. [STACS 2009, J. Comb. Opt. 2009], we are additionally given a set $S$ of pairs of vertices and we ask if there is a coloring in which all the pairs in $S$ are connected by rainbow paths. We show that Subset Rainbow k-Coloring is FPT when parameterized by $|S|$. We also study Maximum Rainbow k-Coloring problem, where we are additionally given an integer $q$ and we ask if there is a coloring in which at least $q$ anti-edges are connected by rainbow paths. We show that the problem is FPT when parameterized by $q$ and has a kernel of size $O(q)$ for every $k\ge 2$ (thus proving that the problem is FPT), extending the result of Ananth et al. [FSTTCS 2011].

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.