Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

HeSP: a simulation framework for solving the task scheduling-partitioning problem on heterogeneous architectures (1602.05510v1)

Published 17 Feb 2016 in cs.DC

Abstract: In this paper we describe HeSP, a complete simulation framework to study a general task scheduling-partitioning problem on heterogeneous architectures, which treats recursive task partitioning and scheduling decisions on equal footing. Considering recursive partitioning as an additional degree of freedom, tasks can be dynamically partitioned or merged at runtime for each available processor type, exposing additional or reduced degrees of parallelism as needed. Our simulations reveal that, for a specific class of dense linear algebra algorithms taken as a driving example, simultaneous decisions on task scheduling and partitioning yield significant performance gains on two different heterogeneous platforms: a highly heterogeneous CPU-GPU system and a low-power asymmetric big.LITTLE ARM platform. The insights extracted from the framework can be further applied to actual runtime task schedulers in order to improve performance on current or future architectures and for different task-parallel codes.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.