Simple average-case lower bounds for approximate near-neighbor from isoperimetric inequalities (1602.05391v2)
Abstract: We prove an $\Omega(d/\log \frac{sw}{nd})$ lower bound for the average-case cell-probe complexity of deterministic or Las Vegas randomized algorithms solving approximate near-neighbor (ANN) problem in $d$-dimensional Hamming space in the cell-probe model with $w$-bit cells, using a table of size $s$. This lower bound matches the highest known worst-case cell-probe lower bounds for any static data structure problems. This average-case cell-probe lower bound is proved in a general framework which relates the cell-probe complexity of ANN to isoperimetric inequalities in the underlying metric space. A tighter connection between ANN lower bounds and isoperimetric inequalities is established by a stronger richness lemma proved by cell-sampling techniques.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.