Papers
Topics
Authors
Recent
2000 character limit reached

Parameter Synthesis for Markov Models: Faster Than Ever (1602.05113v2)

Published 16 Feb 2016 in cs.LO

Abstract: We propose a simple technique for verifying probabilistic models whose transition probabilities are parametric. The key is to replace parametric transitions by nondeterministic choices of extremal values. Analysing the resulting parameter-free model using off-the-shelf means yields (refinable) lower and upper bounds on probabilities of regions in the parameter space. The technique outperforms the existing analysis of parametric Markov chains by several orders of magnitude regarding both run-time and scalability. Its beauty is its applicability to various probabilistic models. It in particular provides the first sound and feasible method for performing parameter synthesis of Markov decision processes.

Citations (80)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.