Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

POMDP-lite for Robust Robot Planning under Uncertainty (1602.04875v3)

Published 16 Feb 2016 in cs.AI

Abstract: The partially observable Markov decision process (POMDP) provides a principled general model for planning under uncertainty. However, solving a general POMDP is computationally intractable in the worst case. This paper introduces POMDP-lite, a subclass of POMDPs in which the hidden state variables are constant or only change deterministically. We show that a POMDP-lite is equivalent to a set of fully observable Markov decision processes indexed by a hidden parameter and is useful for modeling a variety of interesting robotic tasks. We develop a simple model-based Bayesian reinforcement learning algorithm to solve POMDP-lite models. The algorithm performs well on large-scale POMDP-lite models with up to $10{20}$ states and outperforms the state-of-the-art general-purpose POMDP algorithms. We further show that the algorithm is near-Bayesian-optimal under suitable conditions.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.