Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

POMDP-lite for Robust Robot Planning under Uncertainty (1602.04875v3)

Published 16 Feb 2016 in cs.AI

Abstract: The partially observable Markov decision process (POMDP) provides a principled general model for planning under uncertainty. However, solving a general POMDP is computationally intractable in the worst case. This paper introduces POMDP-lite, a subclass of POMDPs in which the hidden state variables are constant or only change deterministically. We show that a POMDP-lite is equivalent to a set of fully observable Markov decision processes indexed by a hidden parameter and is useful for modeling a variety of interesting robotic tasks. We develop a simple model-based Bayesian reinforcement learning algorithm to solve POMDP-lite models. The algorithm performs well on large-scale POMDP-lite models with up to $10{20}$ states and outperforms the state-of-the-art general-purpose POMDP algorithms. We further show that the algorithm is near-Bayesian-optimal under suitable conditions.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.