Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Optimal Sample Complexity for Stable Matrix Recovery (1602.04396v2)

Published 13 Feb 2016 in cs.IT and math.IT

Abstract: Tremendous efforts have been made to study the theoretical and algorithmic aspects of sparse recovery and low-rank matrix recovery. This paper fills a theoretical gap in matrix recovery: the optimal sample complexity for stable recovery without constants or log factors. We treat sparsity, low-rankness, and potentially other parsimonious structures within the same framework: constraint sets that have small covering numbers or Minkowski dimensions. We consider three types of random measurement matrices (unstructured, rank-1, and symmetric rank-1 matrices), following probability distributions that satisfy some mild conditions. In all these cases, we prove a fundamental result -- the recovery of matrices with parsimonious structures, using an optimal (or near optimal) number of measurements, is stable with high probability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.