Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Sample Complexity for Stable Matrix Recovery (1602.04396v2)

Published 13 Feb 2016 in cs.IT and math.IT

Abstract: Tremendous efforts have been made to study the theoretical and algorithmic aspects of sparse recovery and low-rank matrix recovery. This paper fills a theoretical gap in matrix recovery: the optimal sample complexity for stable recovery without constants or log factors. We treat sparsity, low-rankness, and potentially other parsimonious structures within the same framework: constraint sets that have small covering numbers or Minkowski dimensions. We consider three types of random measurement matrices (unstructured, rank-1, and symmetric rank-1 matrices), following probability distributions that satisfy some mild conditions. In all these cases, we prove a fundamental result -- the recovery of matrices with parsimonious structures, using an optimal (or near optimal) number of measurements, is stable with high probability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.