Learning Over Long Time Lags (1602.04335v1)
Abstract: The advantage of recurrent neural networks (RNNs) in learning dependencies between time-series data has distinguished RNNs from other deep learning models. Recently, many advances are proposed in this emerging field. However, there is a lack of comprehensive review on memory models in RNNs in the literature. This paper provides a fundamental review on RNNs and long short term memory (LSTM) model. Then, provides a surveys of recent advances in different memory enhancements and learning techniques for capturing long term dependencies in RNNs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.