Papers
Topics
Authors
Recent
2000 character limit reached

Learning Over Long Time Lags (1602.04335v1)

Published 13 Feb 2016 in cs.NE

Abstract: The advantage of recurrent neural networks (RNNs) in learning dependencies between time-series data has distinguished RNNs from other deep learning models. Recently, many advances are proposed in this emerging field. However, there is a lack of comprehensive review on memory models in RNNs in the literature. This paper provides a fundamental review on RNNs and long short term memory (LSTM) model. Then, provides a surveys of recent advances in different memory enhancements and learning techniques for capturing long term dependencies in RNNs.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.