Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Higher order assortativity in complex networks (1602.03650v1)

Published 11 Feb 2016 in physics.soc-ph and cs.SI

Abstract: Assortativity was first introduced by Newman and has been extensively studied and applied to many real world networked systems since then. Assortativity is a graph metrics and describes the tendency of high degree nodes to be directly connected to high degree nodes and low degree nodes to low degree nodes. It can be interpreted as a first order measure of the connection between nodes, i.e. the first autocorrelation of the degree-degree vector. Even though assortativity has been used so extensively, to the author's knowledge, no attempt has been made to extend it theoretically. This is the scope of our paper. We will introduce higher order assortativity by extending the Newman index based on a suitable choice of the matrix driving the connections. Higher order assortativity will be defined for paths, shortest paths, random walks of a given time length, connecting any couple of nodes. The Newman assortativity is achieved for each of these measures when the matrix is the adjacency matrix, or, in other words, the correlation is of order 1. Our higher order assortativity indexes can be used for describing a variety of real networks, help discriminating networks having the same Newman index and may reveal new topological network features.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.