Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

High-Dimensional Estimation of Structured Signals from Non-Linear Observations with General Convex Loss Functions (1602.03436v3)

Published 10 Feb 2016 in math.ST, cs.IT, math.IT, and stat.TH

Abstract: In this paper, we study the issue of estimating a structured signal $x_0 \in \mathbb{R}n$ from non-linear and noisy Gaussian observations. Supposing that $x_0$ is contained in a certain convex subset $K \subset \mathbb{R}n$, we prove that accurate recovery is already feasible if the number of observations exceeds the effective dimension of $K$, which is a common measure for the complexity of signal classes. It will turn out that the possibly unknown non-linearity of our model affects the error rate only by a multiplicative constant. This achievement is based on recent works by Plan and Vershynin, who have suggested to treat the non-linearity rather as noise which perturbs a linear measurement process. Using the concept of restricted strong convexity, we show that their results for the generalized Lasso can be extended to a fairly large class of convex loss functions. Moreover, we shall allow for the presence of adversarial noise so that even deterministic model inaccuracies can be coped with. These generalizations particularly give further evidence of why many standard estimators perform surprisingly well in practice, although they do not rely on any knowledge of the underlying output rule. To this end, our results provide a unified and general framework for signal reconstruction in high dimensions, covering various challenges from the fields of compressed sensing, signal processing, and statistical learning.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube