Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Ensemble Classifier Combination Based on Noise Removal with One-Class SVM (1602.02888v1)

Published 9 Feb 2016 in cs.LG

Abstract: In machine learning area, as the number of labeled input samples becomes very large, it is very difficult to build a classification model because of input data set is not fit in a memory in training phase of the algorithm, therefore, it is necessary to utilize data partitioning to handle overall data set. Bagging and boosting based data partitioning methods have been broadly used in data mining and pattern recognition area. Both of these methods have shown a great possibility for improving classification model performance. This study is concerned with the analysis of data set partitioning with noise removal and its impact on the performance of multiple classifier models. In this study, we propose noise filtering preprocessing at each data set partition to increment classifier model performance. We applied Gini impurity approach to find the best split percentage of noise filter ratio. The filtered sub data set is then used to train individual ensemble models.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube