Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robust Ensemble Classifier Combination Based on Noise Removal with One-Class SVM (1602.02888v1)

Published 9 Feb 2016 in cs.LG

Abstract: In machine learning area, as the number of labeled input samples becomes very large, it is very difficult to build a classification model because of input data set is not fit in a memory in training phase of the algorithm, therefore, it is necessary to utilize data partitioning to handle overall data set. Bagging and boosting based data partitioning methods have been broadly used in data mining and pattern recognition area. Both of these methods have shown a great possibility for improving classification model performance. This study is concerned with the analysis of data set partitioning with noise removal and its impact on the performance of multiple classifier models. In this study, we propose noise filtering preprocessing at each data set partition to increment classifier model performance. We applied Gini impurity approach to find the best split percentage of noise filter ratio. The filtered sub data set is then used to train individual ensemble models.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.