Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative filtering via sparse Markov random fields (1602.02842v1)

Published 9 Feb 2016 in stat.ML, cs.IR, and cs.LG

Abstract: Recommender systems play a central role in providing individualized access to information and services. This paper focuses on collaborative filtering, an approach that exploits the shared structure among mind-liked users and similar items. In particular, we focus on a formal probabilistic framework known as Markov random fields (MRF). We address the open problem of structure learning and introduce a sparsity-inducing algorithm to automatically estimate the interaction structures between users and between items. Item-item and user-user correlation networks are obtained as a by-product. Large-scale experiments on movie recommendation and date matching datasets demonstrate the power of the proposed method.

Citations (13)

Summary

We haven't generated a summary for this paper yet.