Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Low-Rank Positive Semidefinite Matrix Recovery from Corrupted Rank-One Measurements (1602.02737v2)

Published 8 Feb 2016 in cs.IT and math.IT

Abstract: We study the problem of estimating a low-rank positive semidefinite (PSD) matrix from a set of rank-one measurements using sensing vectors composed of i.i.d. standard Gaussian entries, which are possibly corrupted by arbitrary outliers. This problem arises from applications such as phase retrieval, covariance sketching, quantum space tomography, and power spectrum estimation. We first propose a convex optimization algorithm that seeks the PSD matrix with the minimum $\ell_1$-norm of the observation residual. The advantage of our algorithm is that it is free of parameters, therefore eliminating the need for tuning parameters and allowing easy implementations. We establish that with high probability, a low-rank PSD matrix can be exactly recovered as soon as the number of measurements is large enough, even when a fraction of the measurements are corrupted by outliers with arbitrary magnitudes. Moreover, the recovery is also stable against bounded noise. With the additional information of an upper bound of the rank of the PSD matrix, we propose another non-convex algorithm based on subgradient descent that demonstrates excellent empirical performance in terms of computational efficiency and accuracy.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.