Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic and Quantitative evaluation of attribute discovery methods (1602.01940v1)

Published 5 Feb 2016 in cs.CV

Abstract: Many automatic attribute discovery methods have been developed to extract a set of visual attributes from images for various tasks. However, despite good performance in some image classification tasks, it is difficult to evaluate whether these methods discover meaningful attributes and which one is the best to find the attributes for image descriptions. An intuitive way to evaluate this is to manually verify whether consistent identifiable visual concepts exist to distinguish between positive and negative images of an attribute. This manual checking is tedious, labor intensive and expensive and it is very hard to get quantitative comparisons between different methods. In this work, we tackle this problem by proposing an attribute meaningfulness metric, that can perform automatic evaluation on the meaningfulness of attribute sets as well as achieving quantitative comparisons. We apply our proposed metric to recent automatic attribute discovery methods and popular hashing methods on three attribute datasets. A user study is also conducted to validate the effectiveness of the metric. In our evaluation, we gleaned some insights that could be beneficial in developing automatic attribute discovery methods to generate meaningful attributes. To the best of our knowledge, this is the first work to quantitatively measure the semantic content of automatically discovered attributes.

Citations (5)

Summary

We haven't generated a summary for this paper yet.