An SSD-based eigensolver for spectral analysis on billion-node graphs (1602.01421v3)
Abstract: Many eigensolvers such as ARPACK and Anasazi have been developed to compute eigenvalues of a large sparse matrix. These eigensolvers are limited by the capacity of RAM. They run in memory of a single machine for smaller eigenvalue problems and require the distributed memory for larger problems. In contrast, we develop an SSD-based eigensolver framework called FlashEigen, which extends Anasazi eigensolvers to SSDs, to compute eigenvalues of a graph with hundreds of millions or even billions of vertices in a single machine. FlashEigen performs sparse matrix multiplication in a semi-external memory fashion, i.e., we keep the sparse matrix on SSDs and the dense matrix in memory. We store the entire vector subspace on SSDs and reduce I/O to improve performance through caching the most recent dense matrix. Our result shows that FlashEigen is able to achieve 40%-60% performance of its in-memory implementation and has performance comparable to the Anasazi eigensolvers on a machine with 48 CPU cores. Furthermore, it is capable of scaling to a graph with 3.4 billion vertices and 129 billion edges. It takes about four hours to compute eight eigenvalues of the billion-node graph using 120 GB memory.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.