Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An SSD-based eigensolver for spectral analysis on billion-node graphs (1602.01421v3)

Published 3 Feb 2016 in cs.DC and cs.MS

Abstract: Many eigensolvers such as ARPACK and Anasazi have been developed to compute eigenvalues of a large sparse matrix. These eigensolvers are limited by the capacity of RAM. They run in memory of a single machine for smaller eigenvalue problems and require the distributed memory for larger problems. In contrast, we develop an SSD-based eigensolver framework called FlashEigen, which extends Anasazi eigensolvers to SSDs, to compute eigenvalues of a graph with hundreds of millions or even billions of vertices in a single machine. FlashEigen performs sparse matrix multiplication in a semi-external memory fashion, i.e., we keep the sparse matrix on SSDs and the dense matrix in memory. We store the entire vector subspace on SSDs and reduce I/O to improve performance through caching the most recent dense matrix. Our result shows that FlashEigen is able to achieve 40%-60% performance of its in-memory implementation and has performance comparable to the Anasazi eigensolvers on a machine with 48 CPU cores. Furthermore, it is capable of scaling to a graph with 3.4 billion vertices and 129 billion edges. It takes about four hours to compute eight eigenvalues of the billion-node graph using 120 GB memory.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube