Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 83 tok/s
Gemini 2.5 Flash 150 tok/s Pro
Gemini 2.5 Pro 48 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An SSD-based eigensolver for spectral analysis on billion-node graphs (1602.01421v3)

Published 3 Feb 2016 in cs.DC and cs.MS

Abstract: Many eigensolvers such as ARPACK and Anasazi have been developed to compute eigenvalues of a large sparse matrix. These eigensolvers are limited by the capacity of RAM. They run in memory of a single machine for smaller eigenvalue problems and require the distributed memory for larger problems. In contrast, we develop an SSD-based eigensolver framework called FlashEigen, which extends Anasazi eigensolvers to SSDs, to compute eigenvalues of a graph with hundreds of millions or even billions of vertices in a single machine. FlashEigen performs sparse matrix multiplication in a semi-external memory fashion, i.e., we keep the sparse matrix on SSDs and the dense matrix in memory. We store the entire vector subspace on SSDs and reduce I/O to improve performance through caching the most recent dense matrix. Our result shows that FlashEigen is able to achieve 40%-60% performance of its in-memory implementation and has performance comparable to the Anasazi eigensolvers on a machine with 48 CPU cores. Furthermore, it is capable of scaling to a graph with 3.4 billion vertices and 129 billion edges. It takes about four hours to compute eight eigenvalues of the billion-node graph using 120 GB memory.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.