Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A network-based rating system and its resistance to bribery (1602.01258v2)

Published 3 Feb 2016 in cs.SI and cs.GT

Abstract: We study a rating system in which a set of individuals (e.g., the customers of a restaurant) evaluate a given service (e.g, the restaurant), with their aggregated opinion determining the probability of all individuals to use the service and thus its generated revenue. We explicitly model the influence relation by a social network, with individuals being influenced by the evaluation of their trusted peers. On top of that we allow a malicious service provider (e.g., the restaurant owner) to bribe some individuals, i.e., to invest a part of his or her expected income to modify their opinion, therefore influencing his or her final gain. We analyse the effect of bribing strategies under various constraints, and we show under what conditions the system is bribery-proof, i.e., no bribing strategy yields a strictly positive expected gain to the service provider.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.