Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Provably Correct MPC Approach to Safety Control of Urban Traffic Networks (1602.01028v1)

Published 2 Feb 2016 in cs.SY

Abstract: Model predictive control (MPC) is a popular strategy for urban traffic management that is able to incorporate physical and user defined constraints. However, the current MPC methods rely on finite horizon predictions that are unable to guarantee desirable behaviors over long periods of time. In this paper we design an MPC strategy that is guaranteed to keep the evolution of a network in a desirable yet arbitrary -safe- set, while optimizing a finite horizon cost function. Our approach relies on finding a robust controlled invariant set inside the safe set that provides an appropriate terminal constraint for the MPC optimization problem. An illustrative example is included.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.