Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Provably Correct MPC Approach to Safety Control of Urban Traffic Networks (1602.01028v1)

Published 2 Feb 2016 in cs.SY

Abstract: Model predictive control (MPC) is a popular strategy for urban traffic management that is able to incorporate physical and user defined constraints. However, the current MPC methods rely on finite horizon predictions that are unable to guarantee desirable behaviors over long periods of time. In this paper we design an MPC strategy that is guaranteed to keep the evolution of a network in a desirable yet arbitrary -safe- set, while optimizing a finite horizon cost function. Our approach relies on finding a robust controlled invariant set inside the safe set that provides an appropriate terminal constraint for the MPC optimization problem. An illustrative example is included.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.