Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring limits to prediction in complex social systems (1602.01013v1)

Published 2 Feb 2016 in cs.SI, physics.data-an, and physics.soc-ph

Abstract: How predictable is success in complex social systems? In spite of a recent profusion of prediction studies that exploit online social and information network data, this question remains unanswered, in part because it has not been adequately specified. In this paper we attempt to clarify the question by presenting a simple stylized model of success that attributes prediction error to one of two generic sources: insufficiency of available data and/or models on the one hand; and inherent unpredictability of complex social systems on the other. We then use this model to motivate an illustrative empirical study of information cascade size prediction on Twitter. Despite an unprecedented volume of information about users, content, and past performance, our best performing models can explain less than half of the variance in cascade sizes. In turn, this result suggests that even with unlimited data predictive performance would be bounded well below deterministic accuracy. Finally, we explore this potential bound theoretically using simulations of a diffusion process on a random scale free network similar to Twitter. We show that although higher predictive power is possible in theory, such performance requires a homogeneous system and perfect ex-ante knowledge of it: even a small degree of uncertainty in estimating product quality or slight variation in quality across products leads to substantially more restrictive bounds on predictability. We conclude that realistic bounds on predictive accuracy are not dissimilar from those we have obtained empirically, and that such bounds for other complex social systems for which data is more difficult to obtain are likely even lower.

Citations (139)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.