Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Combining ConvNets with Hand-Crafted Features for Action Recognition Based on an HMM-SVM Classifier (1602.00749v1)

Published 1 Feb 2016 in cs.CV

Abstract: This paper proposes a new framework for RGB-D-based action recognition that takes advantages of hand-designed features from skeleton data and deeply learned features from depth maps, and exploits effectively both the local and global temporal information. Specifically, depth and skeleton data are firstly augmented for deep learning and making the recognition insensitive to view variance. Secondly, depth sequences are segmented using the hand-crafted features based on skeleton joints motion histogram to exploit the local temporal information. All training se gments are clustered using an Infinite Gaussian Mixture Model (IGMM) through Bayesian estimation and labelled for training Convolutional Neural Networks (ConvNets) on the depth maps. Thus, a depth sequence can be reliably encoded into a sequence of segment labels. Finally, the sequence of labels is fed into a joint Hidden Markov Model and Support Vector Machine (HMM-SVM) classifier to explore the global temporal information for final recognition.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube