Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memory-Based Data-Driven MRAC Architecture Ensuring Parameter Convergence (1602.00482v1)

Published 1 Feb 2016 in cs.SY

Abstract: Convergence of controller parameters in standard model reference adaptive control (MRAC) requires the system states to be persistently exciting (PE), a restrictive condition to be verified online. A recent data-driven approach, concurrent learning, uses information-rich past data concurrently with the standard parameter update laws to guarantee parameter convergence without the need of the PE condition. This method guarantees exponential convergence of both the tracking and the controller parameter estimation errors to zero, whereas, the classical MRAC merely ensures asymptotic convergence of tracking error to zero. However, the method requires knowledge of the state derivative, at least at the time instances when the state values are stored in memory. The method further assumes knowledge of the control allocation matrix. This paper addresses these limitations by using a memory-based finite-time system identifier in conjunction with a data-driven approach, leading to convergence of both the tracking and the controller parameter estimation errors without the PE condition and knowledge of the system matrices and the state derivative. A Lyapunov based stability proof is included to justify the validity of the proposed data-driven approach. Simulation results demonstrate the efficacy of the suggested method.

Citations (5)

Summary

We haven't generated a summary for this paper yet.